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Review 
Dislocation network models for recovery creep 
deformation 
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The development of dislocation network models for recovery creep and the important results 
which arise from the application of the models are discussed. These models are basically aimed at 
describing the two simultaneous processes, namely strain hardening and recovery, which occur 
during high-temperature creep deformation. These processes are modelled using detailed 
dislocation mechanisms which occur in the deforming crystalline materials. The present models, 
although still being approximations, are reasonably well able to describe high-temperature 
recovery creep deformation of crystalline materials. 

1. In t roduct ion 
In dislocation creep, crystalline materials are classified 
into two categories (Class I and Class II) depending on 
their rate-controlling mechanism [1]. Pure metals and 
single-phase alloys in which creep is recovery-cont- 
rolled (dislocation climb) are referred to as Class II 
materials, while Class I consists mainly of solid 
solutions in which the rate-determining process in 
creep is believed to be the viscous glide of 
solute-dragging dislocations [-2]. Extensive research 
has been undertaken to understand the mechanisms 
of, and the transitions between, the two types of creep 
behaviour for a number of metals and solid solution 
alloys [3-12]. Recovery creep is believed to be an 
outcome of the interplay between the processes of 
strain-hardening and recovery. Bailey [13] postulated 
that steady-state creep represents the stage during 
which a dynamic balance is achieved between the 
strengthening effect of strain hardening and the 
softening induced by recovery. This basic concept was 
later formulated by Orowan [14] in the well-known 
Bailey-Orowan equation [13, 14] 

R 
- (1) 

H 

where ~ is the creep strain rate, R = - (5 ~/St) is the 
rate of recovery, H = (5 cy/5~) is the strain hardening 
coefficient, and ~ is the applied stress. Numerous 
experiments have since been carried out by various 
investigators to check the validity of Equation 1 for 
recovery creep deformation [15-22]. Most of these 
experiments involve making a stress change to the 
creeping specimen and measuring the instantaneous 
strain generated (stress increment) or the incubation 
time (stress decrement) to obtain the strain-hardening 
coefficient, H, and the recovery rate, R, respectively. 

The Bailey Orowan recovery creep model has since 
been refined by, among others, Cottrell and Aytekin 
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[15], McLean [23], Lagneborg [24], and Gittus [25]. 
As was pointed out by Lagneborg [26], the earlier 
recovery creep models did not describe the details of 
the deformation process [13, 14]. However, the more 
recent formulations, e.g. [23, 24], consider the 
mechanisms in some detail. In accord with direct 
experimental observations, these authors assume the 
dislocations to be arranged in a three-dimensional 
network during creep deformation. This "physical 
picture" is based on the early ideas of Frank [27] that 
the microstructure of a deformed single-phase 
crystalline solid consists of a three-dimensional array 
of dislocation segments arranged in the socalled 
Frank network. The creep process consists of 
consecutive events of recovery and strain hardening. 
The primary and steady-state creep processes are then 
described by the detailed movement of dislocation 
links within the three-dimensional network. 

In this review, the development of network models 
and link length distribution models for recovery creep 
is discussed, within the context of two simultaneous 
processes, i.e. strain hardening and recovery, 
occurring within the three-dimensional dislocation 
network structure. It is interesting to note that this 
development of network models for recovery creep 
has taken place in parallel with experimental 
observations on the dislocation microstructure and 
a great number of empirical creep studies on the effects 
of temperature (activation energy), stress (stress 
exponent), and stacking fault energy on steady-state 
creep rate. It is shown that further work on subgrain 
formation and network coarsening kinetics is required 
in order to extend the present link length distribution 
models to their full potential. 

2. Ne twork  models for recovery creep 
Many direct observations have shown that the 
dislocation microstructure is in the form of 
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a three-dimensional network during recovery creep. 
Such a network structure has been found for example 
in pure or-iron crept at 823 K [28], copper-10 at % 
nickel alloy crept at 873 K [29], an austenitic stainless 
steel crept at 973 K [30], creep-deformed poly-crystal- 
line MgO [31], monocrystalline aluminium and NaC1 
[32], and pure polycrystalline nickel [33], using both 
transmission electron microscopy and etch pit 
techniques. It was found that the link lengths in the 
dislocation network have a typical statistical 
distribution, and this information has been used to 
describe creep deformation process by link length 
distribution models. However, the early network 
models for recovery creep used only the average 
values (e.g. mobile dislocation density, the average 
space between dislocation links, etc.) because it was 
a practical and simple way to deal with the otherwise 
complicated recovery creep process. 

2.1. M c L e a n ' s  model  
McLean [34] has identified the recovery process as 
being the growth of the dislocation network, and 
utilizes Friedel's analysis of network growth [35]. The 
dislocation network coarsening kinetics as developed 
by. Friedel [35], uses a similar analysis to that 
previously applied to grain growth. If (X) is the mean 
mesh size of the three-dimensional network, the total 
length per unit volume of dislocation is p = 1/(k)  2, 
and the total dislocation energy per unit volume is 
therefore proportional to I / ( ;L)  2, which gives the 
network an in-built tendency to coarsen. The driving 
force for such a dislocation network growth is 
inversely proportional to the average mesh size, or the 
average link length, (k).  That is 

d(X) 1 
oc (2) 

dt (X} 

There is a theoretical justification for associating 
network growth with softening because the elastic 
force between dislocations is proportional to 1/(X), as 
given in the Orowan relationship [36, 37] for the flow 
stress, t~ 

abtb ()~) - (3) 
(y 

where :~ is a constant of the order of unity, la is the 
shear modulus, and b is Burgers vector. From 
Equations 2 and 3 it follows that the recovery rate, 
R = - (~cy/8t), is given by 

R oc cy 3 (4) 

This relationship, Equation 4, is supported by 
experimental creep data measured for nickel at 
923-1023 K (R oc ~3) and aluminium at 473 523 K 
(R oc cy 3's) [17]. On the other hand, plastic 
deformation (strain-hardening [38, 39]) has an 
opposite effect to that of recovery and refines the 
three-dimensional network. Each moving dislocation 
will be held up in some location (e.g. locations where 
the network is fine) and bows between these points, so 
that its length increases. Occurring at many places, 
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this kind of event has the effect of increasing the 
average dislocation density. In a polycrystalline metal 
undergoing plastic deformation, there is multiple slip 
in most, if not all, grains, and the refining action 
should be isotropic. The network need not therefore 
change its geometry greatly as the meshes become 
smaller. The refining action during which Equation 
3 holds, is measured by the strain-hardening 
coefficient, H. Deformation at high temperatures can 
thus be described as the "struggle" of the three- 
dimensional network to accommodate the "simulta- 
neous refining and coarsening actions, corresponding 
to strain-hardening and recovery, respectively. In the 
equilibrium state, i.e.: steady-state creep, the average 
mesh size is fixed by Equation 3; the recovery rate, R, 
or coarsening of the network, is determined by 
Equation 4, and creep has to take place at the rate, &, 
which just offsets this coarsening. This balanced state 
is stable in the sense that an increase or decrease in 
average mesh size is automatically corrected [34]. 
This dynamic balance between strain hardening (mesh 
refining) and recovery (mesh coarsening) then is 
described by the Bailey-Orowan equation [13, 14]. 

McLean's recovery creep model [34] is important 
in that it began the network description of recovery 
creep deformation. Both strain hardening and 
recovery processes are now linked to the dislocation 
network microstructure and its dynamic movement 
for steady-state deformation at high temperature. 
A number of more accurate formulations for the 
recovery and strain-hardening processes were then 
initiated on the balanced state of the Bailey-Orowan 
equation for recovery creep. 

2.2. Gittus's theoretical creep equation 
Gittus [40] has developed a theoretical equation for 
steady-state dislocation creep. In obtaining this 
equation, the creeping material is assumed to contain 
a dislocation network in which a balance exists 
between the strain hardening due to dislocation 
generation and the recovery due to network recovery 
climb. The theoretical creep equation has the same 
form as the standard constitutive equation for 
steady-state creep [41-50] 

~s = A T (5) 

where A and the stress exponent, n, are dimensionless 
materials constants, Dv is the bulk self-diffusion 
coefficient, k is Boltzmann's constant, and T is the 
absolute temperature. Gittus's model [40] gives 
A=STc3Cj and n = 3 ,  where Cj is the jog 
concentration. In developing Equation 5, it was 
assumed that the materials obey the Bailey-Orowan 
equation [13, 14], Taylor's strain-hardening model 
[51, 52], and Friedel's network-climb recovery 
equation [35]. The strain hardening coefficient, H, has 
been obtained by Evans [53] using a three- 
dimensional dislocation network model, which is 

~c~ p 
- ( 6 )  

~c 2x 



The recovery rate, R, is obtained from Friedel's 
argument [35] that the rate at which a dislocation 
network will coarsen due to jog-controlled climb,-is 
following essentially the same line as in McLean's 
model [34]. This results in 

~0 4DvbCjx2o 3 
~t gkT 

(7) 

By substituting Equations 6 and 7 into the Bailey-- 
Orowan Equation 1, one obtains the theoretical 
equation, namely [40] 

~ = ( 8 ~ c ; ) ~ -  (8) 

Comparison of experimental creep data has been 
made with that predicted by Equation 8 for nineteen 
crystalline metals, semi-conductors and ceramics. In 
several cases the predicted and actual creep strengths 
differ by less than a factor 2. The fit is poor in the case 
of germanium and MgO, and reasonably good for 
nickel, cadmium, 13-thallium and stoichiometric UO2 
[40]. This recovery-hardening model of dislocation 
creep [40] has since been extended [54] to handle the 
solute-drag effect. This extended model considers the 
case where the dislocations are subject not only to the 
stress which the dislocation network imposes on each 
of its component segments, but also to a friction stress 
due to solute drag. It is shown that the solute- 
drag effect reduces the creep rate in Equation 8 by a 
factor K = {1 - [1 + kT/(Ao2nOvbCj)]-l} 3, where 
Ao =bF/v is a temperature-dependent constant 
whose exact value depends on the particular 
mechanisms by which the solute controls the 
dislocation motion, which is determined by the 
theoretical proportionality between friction stress, F, 
and dislocation velocity, v [54]. If there is no solute- 
drag friction stress (F = 0), then the factor K = 1 and 
Equation 8 applies to the case where solute-drag effect 
is zero. 

2.3. Evans and Knowles' model 
As has already been discussed, all of the recovery creep 
models are based on the assumption that the activa- 
tion energy for creep, Qc, is equal to that for lattice 
diffusion, Q1. In fact, values of Qc appreciably less than 
that for lattice diffusion, Q~, are frequently found at 
typical creep test temperatures for a number of mater- 
ials, such as aluminium [55], copper [56], tungsten 
[57], and thallium [58]. Also, the measured values of 
the stress exponent, n, are often significantly higher 
than those predicted by these theories: i.e. n = 3 [40] 
and n = 4 [59]. Evans and Knowles [60, 61] have 
developed a recovery creep model which accounts for 
the range of observed values in Q~ and n. Reasonable 
agreement has been found in comparing their model 
predictions with the experimental creep results for 
a range of materials including fc c metals (aluminium, 
copper, lead, nickel), b c c metals (~-iron, [3-thallium), 
h cp metals (magnesium, zinc, cadmium), and non- 
metals (magnesium oxide, polycrystalline ice, 

stoichiometric uranium dioxide, polycrystalline 
alumina, lithium fluoride). 

Evans and Knowles' model is based on a considera- 
tion of the rate-controlling process within a three- 
dimensional network and the vacancy flux through 
the lattice or along the dislocation core. Three com- 
ponents of the climb force considered in the model, 
these being: (i) the contribution of the applied stress, 
~b/2; (ii) the elastic interaction between links, gb2/- 
{2n(1-  v)(X)}; and (iii) alterations in dislocation 
density, gb2/(2).  The overall climb force is taken as 
the sum of the above three forces. It is first shown that 
the climb of link dislocations is rate determining, be- 
cause the climb velocity of the network nodes, vn, is 
always faster than that of link dislocations, vv The 
ratio of climb velocities of node and link is given by 

V~ _ 2 in (@b)_b)) (9) Vi 

This ratio is always larger than 1 and has typical 
values > 10. The above equation is arrived at via 
a diffusion path through the lattice. The same result 
holds if the dominant diffusion path is along the dis- 
location cores rather than through the lattice. It is 
assumed in the model [60, 61] that (i) creep strain 
arises entirely from the glide of edge dislocations from 
one pinning point in a three-dimensional network to 
another; this glide step occurs instantaneously; (ii) the 
slip distance, s, will be either the average network 
spacing, (X), or a constant, independent of the net- 
work; (iii) the release of the arrested dislocations oc- 
curs either by rupture of a network node or by opera- 
tion of a Frank-Read source from a network link; (iv) 
any value of link length between Burgers vector, b, and 
the critical Frank Read length is equally likely so that 
the approximate distribution of link lengths is rectan- 
gular; and (v) the climb rate contributions from lattice 
diffusion and pipe diffusion are likely to be independ- 
ent of each other, similar to the case for the models 
where grain-boundary diffusion (Coble creep [62]) 
and lattice diffusion (Nabarro-Herring creep [63, 64]) 
are independent rate processes for a polycrystalline 
solid crept at high temperatures [47]. A general creep 
equation is then obtained by the summation of the 
respective contributions from lattice diffusion and 
pipe diffusion. The creep strain-rate equation is given 
by 

kT \ p ]  

for the case where the slip distance, s, of the released 
link is equal to the average spacing of the network 
(X), i.e. s = (X). The corresponding equation where 
s is a constant, which is independent of (X), is given by 

= Ao - - ~  ( l l )  

where 

A e  - ~2 1 + -  1 + (12) 
2n(1 - v) 
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and 

De = { 
DI 3Dp~2"( 

lnE~t/(2~)] + ~t2~t 2 j (13) 

and v is Poisson's ratio. 
The ratio of the terms on the right-hand side of 

Equation 13 reflects the diffusion path taken. This is 
given by 

~2}.t2Dl 
P = (14) 

3cy2Op In [~la/(2cy) ] 

When P >> 1, lattice diffusion predominates and 
Qc ~ Q~, whereas for P < 1, pipe diffusion prevails and 
Qc ~ Qp. The transition in diffusion path takes place 
when P ~ 1, and Equation 14 reduces to 

D~ b21n[(~)/(Zb)] 
- ( 1 5 )  Op I z 

for this special case. In Equations 9 to 15 ( L ) =  
~tb/~ is the average mesh size or the average distance 
between dislocation links, ~ is a constant of order 
unity, l is an individual link length, D~ = DoCo~ is the 
lattice diffusion coefficient, Do is the vacancy diffusion 
coefficient, Co is the equilibrium vacancy concentra- 
tion, ~ is the atomic volume, Op is the pipe diffusion 
coefficient. If DI/Dp is less than the right-hand side of 
Equation 15, then pipe diffusion will be the dominant 
transport process, which gives rise to a low value for 
Qr At high temperatures, the major diffusion path is 
through the lattice, whereas at lower temperatures, 
pipe diffusion along the network dislocation cores 
predominates. Also, a stress dependence of about 3 is 
predicted at high temperatures for s = (~)  and 
a value of 5 at lower temperatures. The corresponding 
values for s = constant are about 4 and 6, respectively. 

It is interesting to note that the model equations, 
Equations 10 and 11, reduce to the form of the Dorn 
equation, Equation 5, when creep is controlled pre- 
dominantly either by lattice diffusion or pipe diffusion, 
as is also the case for Gittus's model [40, 54]. The 
Dorn equation (Equation 5) is shown to have physical 
validity only for a stress dependence of 3 for lattice 
diffusion control or for a value of 5 for pipe diffusion 
control provided the appropriate diffusion coefficients 
are used [60, 61]. 

3. Link-length distribution models  
In all the models discussed above, the dislocation 
network structure, which at the same time produces 
considerable hardening and provides mobile disloca- 
tions for glide, is either ignored entirely or at best 
described by an average quantity, the dislocation dens- 
ity, which in turn is related to the average link length. 
Although the evolutionary behaviour of the three- 
dimensional network is considered in some of the net- 
work models [18, 60, 61, 65-67], the general con- 
clusions are drawn from the average characteristic 
values of the link-length distribution without going 
into details of how the distribution functions them- 
selves evolve. This is clearly an oversimplification. In 
an actual material, dislocation links will always occur 

over a whole spectrum of lengths [26]. In the follow- 
ing sections, the models based on the link-length dis- 
tribution, which derive creep strain rate and other 
quantities from the detailed movement of the three- 
dimensional network, will be discussed. 

3.1. Ostr6m and Lagneborg's link-length 
distribution model 

Lagneborg and his associates [68-71] appear to be 
the first to have examined the details of link-length 
distribution from a physical description of the rate 
process and they followed this by a mathematical 
formulation for plastic deformation of crystal mater- 
ials. In their most recent recovery-athermal glide 
creep model [71], the distribution of dislocation link 
lengths is taken into account (this is a refinement of 
their earlier link-length distribution models [68-70]). 
This model provides a clear physical picture of the 
three-dimensional dislocation network and its crystal 
orientation and has a number of features that give the 
model considerable predictive capability. The model 
has been applied to a single-phase austenitic steel and 
has been shown to be able to simulate a large number 
of the characteristics of both primary and steady state 
creep. Both the stress and temperature dependencies 
of the model have been evaluated. 

In this dislocation link-length distribution model 
[71], the creep process is considered to consist of the 
following three subprocesses which take place in the 
dislocation network: (i) by climb-controlled shrinkage 
of small meshes and growth of large meshes, the aver- 
age mesh size will increase (recovery process, r); (ii) 
under the action of the applied stress, the growing 
dislocation links will be released by the breakage of 
junctions in the network, when they have attained an 
appropriate length (~,/> Lth); the released links expand 
to loops by glide and thereby generate creep strain 
(release process, sl); and (iii) the expanding loops will 
be blocked and partitioned into shorter links by adja- 
cent parts of the network, which become immobile 
again. New shorter links are then supplied (supply 
process, Sz). 

The three-dimensional dislocation network during 
creep deformation is characterized by a distribution 
function ~ (X, t). The creep strain is generated by glide 
of released links (release process, sO. The released 
links can be any dislocation link with a length longer 
than the threshold link length, Lth (see Fig. 1). These 
are the mobile dislocations (L ~> ~,th) whereas the im- 
mobile (network) dislocations are those with lengths 
between 0 and Xth. The significance of the threshold 
link length will be discussed later. This threshold link 
length is given by the expression [71] 

2p.b 
~,th - (16) s 

The dislocation dynamics during creep can be de- 
scribed according to the above three subprocesses 
through a set of partial differential equations, includ- 
ing the structure evolution (link-length distribution) 
equation and the kinetics (creep strain rate) equation, 
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Figure 1 Schematic illustration of distribution function, qb(X, t), with 
a critical link length, Xcr , and a threshold link size, ~'t~, for a typical 
dislocation link distribution during creep deformation. Dislocation 
links with lengths X >/~'~h will glide and thereby produce strain. The 
glide links are eventually held up (blocked) by adjacent network and 
new shorter links are then supplied. Links shorter than kt~ will 
undergo recovery, whereas links longer than ~ .  will grow until they 
become mobile (X >7 X h), and shorter ones (s < X )  will shrink and 
disappear (k --* 0). 

and their corresponding boundary conditions for net- 
work geometry. During creep deformation, the distri- 
bution function will vary and allow the shorter links 
0 v < )Vcr) to shrink and the longer links (9~o~ < k < ~.th) 
to grow as well as the links where )v ~> )vth to glide (see 
Fig. 1). The first two processes, i.e. shrinkage and 
growth, of the individual links were assumed to follow 
the network coarsening kinetic equation analogous to 
the grain growth theory [34, 35, 72-74] (Ostwald 
ripening mechanism [75-78]) 

dt - M F  - (17) 

where F = lab2~2 is the dislocation line tension, and 
M is the mobility of the climb dislocations. The distri- 
bution frequency function ~(~., t) is defined such that 
the number of links per unit volume with length from 
0-)v is NO v, t) and the total dislocation density is p(t) 
at time t 

N0~, t) = fox dp(~,, t)d)~ (18) 

p(t) = f]~ Xd~(X, t) d)~ (19) 

The theory then describes the development of the 
link-length distribution, qb0~, t) = ~, with time during 
the creep test and derives all other relevant outputs 
(including the creep strain rate, the creep strain, the 
mobile and immobile dislocation density, etc.) from 
the evolution of this link-length distribution. The gov- 
erning network structure equation is 

5--/ = ~ -  + ~ -  + -~- (20) 
r sl s2 

On the right-hand side of Equation 20, the subscripts 
r, sl and s2 represent recovery, release gliding process 
and supply process, respectively. The last two terms 

constitute the strain process, s = s I -~-s 2. The three 
terms on the right-hand side of Equation 20 are as 
follows [71] 

~ -  r - -  d - t  ~ ~2  (21)  

(Sqb~ q - 1 dX 
St/s1 - H(x) ~- de ~b(X, t) (22) 

where H(x) is the Heaviside unit function defined by 
H(x) = 1 w h e n x / > 0 a n d H ( x )  = 0 w h e n x < 0 ;  
x = )v -  max0vc, Xth); q is an orientation constant 
which determines the distribution of links in the differ- 
ent slip systems and is larger than 2; and c(t) is the 
probability function in the supply process. The prob- 
ability that a link of length )v will be hit by an expand- 
ing loop during the time interval (t, t + At) is equal to 
c(t)XAt, k(t) is the network geometry factor in the 
supply process whose value is less than 1 [71]. 

The recovery coarsening process increases average 
link length and decreases total dislocation density, 
whereas the strain process (virtually only the release 
process, sl) increases the total dislocation density. In 
steady state, these two processes (r and s) balance each 
other dynamically, and the distribution function be- 
comes a steady state distribution (time independent). 
During the entire creep process, from primary to 
steady state, the change of the three-dimensional net- 
work is always restricted by the constant volume of 
the creep specimen. Both the recovery process and the 
strain process should meet this constant volume con- 
dition, namely 

(24) 

In the recovery process the volume conservation con- 
dition determines the value of ;%r(t): 

f :  k2(~ (~,, t)d)~ 
~ . ( t )  = (25) 

o )~ qb (~, t)d)~ 

The strain rate kinetic equation is obtained by as- 
suming the expanded dislocation loops are circular 
with an average radius, r 

dt - ~- Jo \ 57 ~d)~ (26) 

and the dislocation density change in the strain pro- 
cess is given by 

do - dt dX (27) 

where m is the Taylor factor. For fcc metals, m = 3.1 
[79]. The contribution of the release expanding pro- 
cess, Sl, to the creep strain rate and dislocation density 
is seen in the kinetic Equation 26 and Equation 27, 
respectively. It has been demonstrated that the climb 
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Figure 2 Schematic diagram showing outwards expansion of pure 
edge dislocation loop for a larger one by diffusion climb. The radius 
of the loop has increased dR during a time interval dr, and the area 
swept out is dA. Smaller loops will shrink inwards and disappear. 
This recovery climb process is a basic event in the dislocation 
network models of recovery creep deformation at elevated temper- 
atures (T ~> 0.5 Tin, where Tm is the melting temperature measured in 
degrees Kelvin). 

process of the network will not generate a creep strain 
[80]. This was shown by using a network model where 
the climb process is visualized as the expansion or 
shrinkage of a pure edge dislocation loop, Fig. 2. The 
supply process, s2, is a process where the expanding 
loop is eventually arrested by the adjacent network, in 
this process new shorter links are then supplied. It is 
obvious that this process will neither produce creep 
strain nor will it change the dislocation density. 

In deriving the release term (the second term on the 
right-hand side of Equation 20), a quantity co = 1/m 
is introduced which is the inverse of the Schmid factor. 
For polycrystalline materials deforming plastically at 
high temperatures, the quantity, co, can be regarded as 
a continuous variable. This is physically justifiable 
[71]. First, in a polycrystalline specimen the total 
number of slip systems is very large, which is equal to 
the number of grains times the number of slip systems 
in each grain. Secondly, co is defined as the inverse of 
the Schmid factor, that is the ratio between the applied 
tensile stress and the resolved shear stress, co = cy/zj. 
However, the shear stress, which is actually acting 
upon a dislocation link, is not exactly equal to zj 
because fluctuating internal stresses exist in the crys- 
tal. For an individual slip system, the co values will 
then be spread out continuously. Then, each disloca- 
tion link is associated with both an co value (slip 
system and its crystal orientation) and a )~ value (link 
length). Because m ~< 1/2, one has co/> 2. Arrested 
links satisfy co > cyh/gb and mobile links satisfy 
o~ <<. gh/gb, where the resolved shear stress zj = mj~ 
(mj is the Schmid factor for an individual slip system j) 
in the jth slip system is either less or larger than the 
average shear stress, ZFR. This ZFR is required for a dis- 
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location link to be released by the operation of the 
Frank-Read mechanism [81], where rFR = gb/h is the 
Frank-Read threshold stress. The shortest link that 
can be released for a given applied stress, c~, is ob- 
tained from h/> gb/mjcy (for mobile links) by inserting 
the maximum value of the Schmid factor, which is 1/2. 
Therefore, links shorter than )~th = 2gb/cy cannot be 
released. Both the existence and the stress dependence 
of htu have been proved in the model [71]. 

Equations 20-27 have been solved numerically for 
the creep deformation of a 20%Cr-35%Ni  austenitic 
stainless steel. The calculated creep strain, dislocation 
density, and strain-hardening coefficient for both pri- 
mary and steady-state agree well with experimental 
results for the material. Also, the model 1-71] shows 
that the decrease of the strain rate and the large 
increase in strain-hardening coefficient during the pri- 
mary stage are caused by the same phenomenon, 
namely that only links longer than )~th given by Equa- 
tion 16, )~th ---- 2~b/c~, can be released and start to glide, 
thereby producing creep strain, and the number of 
these long links is gradually exhausted during the 
primary creep stage. The high value of the steady-state 
strain-hardening coefficient (of the order of shear 
modulus) is explained by this result. The steady-state 
dislocation density and its stress dependence are large- 
ly determined by the threshold link length, ~.t~ [71]. 
The calculated value for strain-hardening coefficient 
in steady-state, i.e. H = 0.621a, is typical of steady-state 
creep where experimental values between 0.21a and 
1.6g have been reported for a number of materials [17, 
19, 20, 82, 83]. It is also consistent with predictions of 
Evan's strain-hardening model [53]. Another impor- 
tant result is that the model [71] predicts an incuba- 
tion time with zero strain rate, At, and an instan- 
taneous strain, Aa, for an arbitrary stress decrement, 
- A~, and increment, + Ao, respectively. These two 

quantities, At and Aa, can be calculated from the 
distribution function, qb, and the threshold link length, 
hth, for a stress change test during creep deformation. 

Lagneborg's creep theory [71], especially the sec- 
tions dealing with the evolution of the distribution 
function, qb, the threshold link length, hth, and the 
stress change behaviour, At, Aa, _ Acy, has been the 
foundation and starting point for a number of other 
models and studies, which we will now examine. For 
example, the stress-change tests can be used to deter- 
mine strain-hardening coefficient during steady-state 
creep [82]. Also, the shape of the strain transient 
following a sudden stress change (drop or increment) 
during steady-state creep provides a useful experi- 
mental technique for probing the micromechanisms 
of creep [9]. The shape of the strain transient after 
a stress increase during steady-state creep is a reliable 
indicator of the rate-controlling mechanism of creep. 
Metals and alloys in which recovery is the rate-con- 
trolling mechanism (i.e. pure metals and Class II 
alloys) exhibit an N-type (normal) transient for which 
the initial creep rate is high, but decreases with time 
reaching a constant or "steady state" value. Class 
I alloys, in which viscous glide is rate controlling, 
exhibit an I-type (invert) transient for which the creep 
rate gradually increases to reach a constant value. The 



shape of the strain transient after a sudden stress drop, 
on the other hand, gives no immediate indication of 
the rate-controlling mechanism in creep, because pure 
metals and Class I and Class I! alloys each show 
I-type transient. However, the stress drop test can still 
be invaluable in determining such quantities as effec- 
tive stress, internal stress [10], and the recovery rate 
[15-20] in steady-state creep. 

3.2. Ardell and Przystupa's l ink- length 
statist ics model 

Ardell and Przystupa [84] have developed a theory of 
elevated-temperature deformation, based on the stat- 
istics of the distribution of dislocation link lengths. 
The distribution consists of a sessile region (X < Xth), 
in which network growth, or recovery, occurs by 
a coarsening process, and a glissile region (X/> Xth), in 
which dislocation links are long enough to glide (here 
Xth is a critical link length determined by the applied 
stress). A major premise of this theory is that network 
coarsening continually produces a supply of links that 
grow and exceed X~h. These links can then move in an 
unconstrained manner until they collide with shorter 
links in the network, thereby stimulating the coarse- 
ning process anew. Steady-state deformation is pos- 
sible when network coarsening and refinement bal- 
ance each other in such a way that qb(X, t) becomes 
independent of time [84]. Partial differential equa- 
tions governing the evolution of the distribution of 
link lengths have been obtained for a model that 
assumes gliding links collide only with network links 
and produce only new network links. The total change 
in the number of links in the size interval between 
X and X + dX is given by the equation 

_ ~(qbg) + ~ Q , ( X ,  t) (28) 
~t ~;L i=1 

where g = g( X, t ) -  dX/dt is the growth rate of an 
individual link of length X; Qi(X, t )=  8q~i(X, t)/bt, 
where 8~(X, t)dX is the number of links per unit 
volume added to the interval X, X + dX from the ith 
source in the time interval St; and n is the total number 
of sources contributing to the formation of new links. 
Four source terms Qi(L t) have been analysed [84]. 
For the region 0 < X < Xth, there are three source 
terms: namely (i) QI(X, t)dX which accounts for the 
new links with length between X and X + dX that are 
produced by division of network links having length 
~, < X;< ~'th; (ii) Q2(~L, t)dX which accounts for the 
links which leave the interval ;% X + dX during the 
collision process; and (iii) Q3(~, t)dX which is the 
contribution to X, X + dX form the network links 
produced by division of the gliding links. For the 
region L > ~'th there is only one source: namely 
Q4(X, t)dX which results from the loss of links from an 
interval in this region. These four sources are defined 
as follows [84] 

_ 2M i ~'" qb(X',t) QI(L t) N, ~., X-----;-- dX' (29) 

M 
Q2(~-, t) - ~(x,  t) (30) 

in  

ma 
Q3(X, t) = ~nn( j + 1)qb(X, t) (31) 

Q4(X, t) - p(k, t)ggdp(X, t) (32) 

where M is the rate of collisions per unit volume of the 
network lines by gliding links; Nn is the number of 
network links per unit volume in the sessile region 
(0, Xth), Md is the total rate per unit volume at which 
gliding links encounter network links, (j + 1) is the 
number of network links per unit volume created by 
a gliding link which collides on average with j network 
links; p(X, t) is the probability that a gliding link 
encounters severn network links per unit volume; and 
gg is equal to dX/dt in the glissile region (~'th, OO) [84]. 

Each collision between two links results in their 
destruction and the formation of four new shorter 
links, regardless of the type of collision [68, 84]. If M is 
the rate of collisions per unit volume, and the total 
rate of formation of new links per unit volume is 2M, 
then 

;oQi(X,t)dX = 2M (33) 
i = 1  

A general expression for the rate at which the num- 
ber of links per unit volume changes with time, dN/dt, 
is given by 

dN 
- lim(qbg) + 2M (34) 

dt z ~o 

The first term is equivalent to the statement that a link 
can disappear only by shrinking to zero size. Because 
the total length of the links remains unchanged during 
the collision process, then we can write 

~, f~ xQ,(z,, t)dX = 0 (35) 
i = 1  

The rate at which the dislocation density changes 
with time can be described by 

dp 
dt N(g)  (36) 

which implies that the kinetics of dislocation multipli- 
cation and annihilation are controlled entirely by the 
factors that govern the average rate of link growth. 
Equations 33-36 constrain the behaviour of 
qb(k, t ) -  qb, and are the boundary conditions for 
Equation 28. 

The self-consistency of the theory [84] has been 
analysed with respect to the model Equations 28-36. 
Ardell and Przystupa demonstrated analytically that 
the values of dN/dt and dp/dt predicted by the con- 
tinuity Equation 28 with all the source terms Qi(X, t) 
are consistent with the conservation Equations 33-35, 
respectively. 

The strain rate obtained from this model is given by 
the expression 

= ~brl3sin 2 [(X,)/(2r)](gn)Nn + r (37) 

where r is radius of a bowing out network link X,, 
= 13(0 is a constant dependent upon the shape of the 

distribution, the subscripts n and g represent network 
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and glide links, respectively, q is a geometrical con- 
stant and v = dr/dt is the velocity of the gliding links. 
This strain rate, Equation 37, predicts automatically, 
without ad hoc assumptions, that there is a recovery 
component (the first term from constrained motion) 
and a glide component (the second term from uncon- 
strained motion: "free motion") contributing to the 
strain rate. In this sense this present theory justifies the 
earlier hypothesis of Ajaja and Ardell [85] that the 
annihilation of dislocations generates creep strain. 
This contribution is found to be very significant when 
recovery is appreciable, and is mainly responsible for 
the decreasing creep rate associated with the normal 
primary creep of Class II materials [85]. It is also 
supported by recent experimental results, which 
clearly show that both static and dynamic recovery 
can produce significant strain [85, 86]. 

Some implications in high-temperature creep of 
Class II materials have been also discussed in terms of 
this model [84]. The dislocation multiplication and 
annihilation kinetics are found to be similar to the 
earlier one [87-90], i.e. 

d_9 = kip - -  kZp 2 (38) 
dt 

with two important exceptions: namely (i) the rate 
constants kl and k2 are time dependent; and (ii) the 
multiplication rate is proportional to 03/z rather than 
0, whereas the annihilation rate remains proportional 
to 02. Transient creep and the initial creep rate have 
also been analysed and it is shown that the initial 
stages of creep of Class II materials are controlled by 
the network growth process (dislocation glide in the 
conventional sense contributing almost nothing to the 
deformation), and that the phenomenon of recovery 
produces positive strain in the sample. For steady- 
state creep, the model predicts that ~s is governed quite 
generally by the Taylor-Orowan equation [14, 51, 52, 
91-953, namely 

-~ ~bpmD (39) 

modified realistically by a "microstructural para- 
meter", S, which depends upon the dislocation micro- 
structure through the nature of the dislocation link- 
length distribution. It has long been recognized that 
a microstructural parameter should influence the 
steady-state creep rate of different materials [1, 96], 
and such parameters have been introduced into vari- 
ous theories on an ad hoc semi-empirical basis. In this 
theory, it arises naturally through the influence that 
microstructural factors (e.g. crystal structure, stacking 
fault energy) have on the shape of the dislocation 
link-length distribution and on the values of the frac- 
tion of mobile dislocation density and the fraction of 
mobile dislocation links in steady-state. It is also 
pointed out that the model results in a steady-state 
creep rate, ks, equation which is consistent with the 
so-called "natural law" [97 100], ks oc 0-3, which arises 
when v oc 0- and Ps oc 0 -2. Here, however, stress expo- 
nents greater than 3 can result from the "potential" 
stress dependence of the structural parameter S. 

This model [84] has also been modified successfully 
to account for the experimental observation [101] 
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that none of the links in the distribution of dislocation 
link lengths in monocrystalline aluminium deformed 
in compression at 920 K is long enough to glide or 
climb in an unconstrained manner [102]. That is, in 
Harper-Dorn creep [103, 104] there is no free glide, 
but rather there is climb-assisted glide (constrained 
motion) of dislocation links in the network coarsening 
dynamics which will generate a finite strain rate. 
When the applied stress is high enough, such as in the 
power law regime, some links have lengths larger than 
)~th, and a dislocation segment can move by either 
climb or glide, or a combination of both, without the 
need to remain in equilibrium with its line tension (this 
line tension relates to unconstrained motion). In the 
Harper-Dorn (H-D) creep regime, for all links with 
length )~ < Xth, the dislocation must move somehow if 
it is to adjust its length when its pinning points (the 
nodes in the network) move as the network coarsens. 
This movement must necessarily also occur by small 
increments of glide or climb, or a combination of both, 
but such motion is constrained by the requirement 
that the forces acting on the dislocation and impelling 
its motion are always in equilibrium with its line 
tension [102]. The continuity equation for steady- 
state H-D creep is the second-order differential equa- 
tion (modified from Equation 28) given by 

d2Js 2Mns dqbs 4Mns qbs 
d)~ ~ + U.--~- d-~- + Uns X - 0 (40) 

where J = ~)g, and the subscript s indicates the steady 
state value of the respective parameters and functions, 
The steady-state creep strain predicted by this modi- 
fied model [102] for H-D creep conditions is approx- 
imately given by 

~ M n s b 2 ( ~ ? )  

~s ~ 24F 0- (41) 

which predicts that steady-state H-D creep is Newton- 
ian in the limit of small applied stress, as is observed 
experimentally. The temperature dependence of ~s is 
contained primarily in the parameter Mns (the rate per 
unit volume of collisions between constrained links), 
which is logically governed by diffusion. Some contri- 
bution from the factor (0~s) 3) can be expected if the 
shape of the link-length distribution is temperature 
dependent during steady-state H-D creep [102]. 

3.3. Ajaja's link-length distribution analysis 
Recently, Ajaja has analysed recovery creep [105], the 
Bailey-Orowan equation [106], and the role of 
recovery in high-temperature constant strain-rate 
deformation [107], using a model based on the three- 
dimensional distribution of dislocation links. In a 
recovery creep model [105], the jerky glide motion of 
dislocations between obstacles is assumed. A three- 
dimensional distribution of dislocation links is visual- 
ized such that only links which attain a certain thre- 
shold size through recovery can glide rapidly until 
they are again arrested at the next obstacle. It is shown 
that the rate of mobilization, Om, of arrested disloca- 
tions is directly proportional to the annihilation rate, 
Iba, i.e. ~)m = ~/(t)~)a. The creep strain rate, ~, during 



transient creep is related to the annihilation rate, 15a, 
the obstacle spacing, L, and the Burgers vector b of the 
dislocations according to the expression 

= ~lq/(t) OabL (42) 

where ~ is a geometrical constant, ~(t) is a time- 
dependent parameter which is determined by the in- 
stantaneous free dislocation density as well as the 
dislocation distribution. At steady-state, q~(t) becomes 
a constant which is stress and temperature indepen- 
dent. 

The average effective dislocation velocity is also 
shown to be linearly proportional to the annihilation 
rate, v = [~( t )9  -3/2] [~a- This relation shows that v is 
not a "glide" velocity per se, because its value is deter- 
mined more by the rate of release of arrested disloca- 
tions than by the details of the glide process itself 
[105]. This model has demonstrated clearly the prom- 
inent role played by two major factors during crystal 
deformation, see Equation 42. The first, and the more 
familiar one, is the number density of obstacles, which 
is important to the extent that it determines the inter- 
obstacle spacing between which a released dislocation 
link can glide freely. The second, and perhaps more 
important factor, is the rate of release of arrested 
dislocations. During the creep of pure metals, the 
former is determined by the dislocation density, and 
the latter by the rate of recovery. Also in this model it 
is argued that the incorporation of subgrain strength- 
ening to explain transient creep behaviour [108] (the 
decreasing creep rate in normal primary creep) is not 
justified by recent experimental results [109, 110], and 
is considered not necessary in the light of the model. 
However, further development of the model is needed, 
because the details of the annihilation rate process and 
evolution of the dislocation link length distribution 
have not been considered in the model so far de- 
veloped. 

The above model [105] has been employed to ana- 
lyse the use of stress change test technique in measur- 
ing recovery rate, R, and strain-hardening coefficient, 
H, and the derivation of the Bailey-Orowan equation, 

= R / H .  It is demonstrated [106] that this equation 
is valid for steady-state but not for transient creep 
which is essentially in agreement with Bailey's original 
model [13], and that the values of Rm and Hm which 
are measured by stress change techniques do not rep- 
resent the true values of the recovery rate, R, and 
strain-hardening coefficient, H. However, the ratio of 
the measured values is always equal to the strain rate 
during transient and steady state, that is [106] 

Rm 
- (43) 

Hm 

which agrees the early analysis and experimental 
measurements made by Barrett et al. [111]. In terms 
of the true values of R and H, the creep rate during 
transient creep is given by 

= 13~(t) R (44) 

which clearly shows that the Bailey-Orowan equation 

is not applicable to transient creep. In Equation 44, 
[3 is a constant whose value depends mainly on the 
link geometry during glide, and ~(t) is a time-depend- 
ent parameter related to dislocation distribution. In 
steady-state, where [3~t(t)= 1, the Bailey-Orowan 
equation is easily obtained from Equation 44. In 
steady-state there is a true balance between the recov- 
ery and strain-hardening processes. 

The model [105] has also been used to delineate the 
role of recovery during high temperature constant 
strain rate deformation [107]. It is shown that the 
model provides a good semi-quantitative explanation 
for classical strain-hardening as well as for high-tem- 
perature strain-softening resulting from rapid recov- 
ery. It predicts linear strain-hardening, whereby the 
ratio of the strain-hardening coefficient, H, to the 
shear modulus, p, is constant when a crystal is tested 
in the absence of recovery. The slope of the 
stress-strain curve, | for high-temperature constant 
strain-rate deformation is related to the low-temper- 
ature strain-hardening coefficient, H, the dislocation 
annihilation rate, 15,, the flow stress, o, the free disloca- 
tion density, P, the strain rate, ~, and a parameter 
which is sensitive to the dislocation distribution. The 
model gives a modified version of the Bailey-Orowan 
equation for simultaneous strain-hardening and re- 
covery during constant strain-rate deformation, 
namely 

R 
| = H - ~ l ( t ) _  (45) 

where R is the recovery rate, H is the low-temperature 
strain-hardening coefficient, rl(t ) is time dependent 
during transient stage of deformation, which is deter- 
mined by such factors as ~, p and details of the 
dislocation distribution, i.e. q ( t ) =  ~o~os 
where ~o and ~2 are constants, % is the ratio of the 
growth rate of threshold-size links, Kth, to the growth 
rate of the average link size, @ )  [105], c = ~olab. In 
steady-state stage, rl(t) = 1 which gives a direct pro- 
portionality between a and pl/2 as is required by 
strain-hardening models, i.e. c~ = ~3gbp 1/2, where 
~3 = (=o~z/~o) ~/2 is a constant. Equation 45 has been 
applied to the experimental results for NaCI mono- 
crystals deformed under compression at 873 and 
973 K [112]. The calculated strain-hardening coeffi- 
cient, H, is in fair agreement with other reported 
results [113, 114]. It is also shown in this analysis that 
a direct correlation exists between the recovery rate, 
R, and the dislocation density, P, whereby the larger 
the dislocation density the higher the recovery rate. 

4. Discussion and conclusion 
As has been pointed out by Lagneborg [26], there are 
a number of widely accepted theories for creep de- 
formation by recovery creep. These include Weert- 
man's dislocation climb models [97, 115, 116], models 
based on thermally activated motion of jogged screw 
dislocations [97, 117 120], and models based on the 
climb process of extended dislocations [121-124]. 
These theories have cast light upon the climb recov- 
ery, and dislocation dynamics in dislocation creep, 
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and are consistent with the experimental results on 
both the activation energy and stress exponent of 
steady-state creep rate and the stacking fault energy 
effect [1]. However, the drawbacks of these models are 
also well-known, e.g. whether dislocations on parallel 
slip planes and of opposite sign will be held up by 
mutual interaction and form pile-ups as in the climb 
model [125]. The imperfections of the dislocation-jog 
model are in many respects similar to those of the 
climb theory [26]. For example, the uncertainty of the 
mobile dislocation density, Pro, is great, with respect 
both to its magnitude and stress-dependence. Further- 
more, the stress-dependence of the spacing between 
the jogs is not considered. On the other hand, the 
network models especially the recent ones, are based 
upon a detailed description of the evolution of the 
distribution function for the dislocation network 
structure as a three-dimensional distribution of link 
lengths, and are far more appealing on physical 
grounds. One of the principal advantages of such 
models is that out of all the existing dislocation links, 
it automatically and in a physically-sound fashion 
"selects" the few mobile links when it comes to deriv- 
ing the creep strain rate. 

There are, however, one or two approximations 
made in the dislocation link distribution models, 
which relate to the subgrain formation and the net- 
work recovery kinetics. The first assumption is that 
distribution frequency function qb(X, t) only takes into 
account those free dislocation links not incorporated 
in subgrain boundaries. It now seems that this is 
a justifiable approximation from the point of view of 
Li's elastic theories of subgrain boundaries [126-129] 
and recent experimental observations on high-tem- 
perature deformation [130-136]. A uniform array of 
dislocations is inherently energetically unstable and 
tends to form a modulated cell structure [137, 138]. 
High-temperature deformation of an A1-Mg-Mn 
alloy has been carried out [136] in plane-strain com- 
pression at constant strain rate and temperature, and 
with abrupt changes in the Zener-Hollomon para- 
meter, Z = ~ exp(AH/RT) ,  where AH is activation 
enthalpy [139-141]. It was found that the proof 
strength depends primarily on the dislocation density 
within the subgrains [136]. The subgrain size played 
a lesser role. This is interpreted in terms of the fact that 
dislocations within boundaries have a lower strength- 
ening efficiency per dislocation. The lesser role of the 
subgrain size can be considered in terms of 
a Hall-Petch contribution [142-145] with the sub- 
grain-boundary strength being much less than the 
strength of grain boundaries [136]. In fact, experi- 
ments show that characteristic networks of disloca- 
tions tend to form in creep. The network outline cells 
within which there are relatively few free dislocations. 
As the networks do not exert significant long-range 
stresses, most of the free dislocations within the cells 
are unaffected by the stresses produced by dislocations 
in the cell walls [35]. They are, however, subject to the 
internal stress produced by the line tension of the 
dislocation link itself [146]. The stable subgrain 
boundaries have no long-range stresses. Because the 
effects of the array are all short-range in nature, it can 
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be said that an infinite edge dislocation array is 
a weaker barrier for the penetration of parallel edge 
dislocations than the same set of edge dislocations 
which composed the array but are distributed ran- 
domly [129]. Also, because the flow stress stays nearly 
constant, the dramatic changes in the character of the 
subgrain boundaries that are observed during steady- 
state deformation suggest that the details of the sub- 
boundaries are not an important consideration in the 
rate-controlling process for creep, and as such any 
description of the rate-controlling process for creep 
should consider the density of dislocations not asso- 
ciated with subgrain boundaries [130-135]. 

The second assumption relates to the network 
coarsening kinetics, i.e. Equation 17. It has been 
pointed out that this equation in its present form 
cannot fully describe the network coarsening process 
[-71, 102, 147, 148]. However, Equation 17 is, in fact, 
identical to Friedel's equation for the dislocation link 
speed of climb for the lines of the networks [35], 
namely 

dr Dsgb3Cj 1 
- ( 4 6 )  

dt k T  r 

when one takes the network spacing, r, to be the 
dislocation link length and sets the mobility, M, and 
the line tension, F, equal to: 

m = 2CjDsb/kT (47) 

F = gb2/2 (48) 

where Ds is the atomic self-diffusion coefficient and Cj 
is the jog concentration [149]. This is the classical 
Einstein formula [54, 150-152], which in this case 
relates the drift velocity of the climbing dislocation 
lines to the atomic self-diffusion coefficient, Ds, and to 
the force due to the line tension of the dislocations 
[153 158]. The nature of dislocation network coarse- 
ning is to reduce the free energy of the system through 
a thermal activation process of atomic diffusion. Thus, 
the universal Einstein equation [152] is applicable to 
the network-coarsening process in a proper formula- 
tion of the rate equations. Plastic deformation of crys- 
talline solids is basically due to thermally activated 
deformation processes [149, 159-166]. Creep recovery 
coarsening during creep deformation at elevated tem- 
peratures and under an externally applied stress is an 
extremely complicated dynamic process. Although 
Equation 17 can describe the basic physical nature of 
the dislocation network coarsening process during 
creep deformation, it is unable to predict fully all 
details of the rate process in network coarsening. 
Keeping these points in mind, it is therefore clear that 
the link-length distribution models are only approx- 
imate models for recovery creep. Further work should 
then be concentrated on the role of subgrain forma- 
tion and on a more accurate description of the net- 
work coarsening during high-temperature creep de- 
formation. 
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